Ваш браузер устарел. Рекомендуем обновить его до последней версии.

РЕМОНТ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЯ АРМАТУРЫ ВЫСОКОГО ДАВЛЕНИЯ

 

На современных мощных энергетических блоках установлено большое количество арматуры с условными проходами от 6 до 1600 мм на рабочее давление до 37,3 МПа и температуру до 560 °С. На электростанции с 8 энергоблоками мощностью по 300 МВт установлено свыше 35 тыс. ед. арматуры, на одном энергоблоке 800 МВт количество установленной арматуры составляет 20 тыс. ед. Наибольшее количество арматуры (70 %) на ТЭС составляют запорные клапаны (вентили) Dy 10 - 50 мм. Задвижки составляют приблизительно 5 % установленной арматуры. На регулирующую и предохранительную арматуру приходится примерно 25 % установленного количества арматуры.

Установленная на ТЭС арматура работает в разных условиях. Одна и та же арматура на одних узлах работает в условиях повышенных перепадов давлений и частых теплосмен, на других - в условиях умеренных перепадов давлений и при температурах, близких к температуре окружающей среды.

Количество подлежащей ежегодному ремонту арматуры зависит от ее повреждаемости, которая в свою очередь зависит от условий ее эксплуатации на различных узлах ТЭС. Так, например, вентили Dy 50 мм, устанавливаемые на линиях рециркуляции питательных насосов и работающие при перепадах давлений до 23 МПа, приходится заменять через 6 - 8 мес. эксплуатации, а те же вентили на трубопроводах подачи на впрыск собственного конденсата могут работать без ремонта 4 - 6 лет. Поэтому для определения количества арматуры, подлежащей ежегодному ремонту, необходимо провести обследование повреждаемости арматуры на данной ТЭС. Выполнить такую работу по каждой электростанции не представляется возможным, поэтому для оценки объема ежегодного ремонта арматуры следует опираться на данные ЦКБ Энергоремонта, которым на основании многолетнего опыта ремонта арматуры на большом количестве ТЭС установлено, что количество арматуры высокого давления, подлежащей ремонту, при капитальном ремонте энергоблока составляет примерно 75 - 80 %, при расширенном текущем и среднем - 35 - 40 % и при текущем ремонте 20 - 25 % всего количества арматуры, смонтированной на энергоблоке.

Для энергоблоков с различным составом оборудования, котлов и турбин различных параметров и разной мощности установлена периодичность проведения капитальных, средних и текущих ремонтов. Для большинства энергоблоков и почти для всех котлов периодичность капитальных ремонтов составляет 4 года, для некоторых энергоблоков и большинства турбин - 5 лет. В период между капитальными ремонтами предусматривается один средний и 5 - 6 текущих ремонтов. Исходя из приведенных нормативов можно определить с достаточной степенью точности ежегодный объем ремонта арматуры на ТЭС. При определении объема ремонта арматуры для конкретной ТЭС следует принимать во внимание наработку арматуры. На многих ТЭС в эксплуатации находится большое количество морально устаревшей и физически изношенной арматуры. Поддержание ее в работоспособном состоянии требует дополнительных материальных и трудовых затрат.

Длительное время стоимость новой арматуры была ниже стоимости ремонта, особенно это касалось вентилей Dy 10 - 20 мм, стоимость которых была в 2 - 2,5 раза ниже стоимости их ремонта. В связи с этим многие электростанции не развивали у себя ремонтную базу, предпочитая всеми доступными средствами доставать новую арматуру, а подлежащую ремонту отправлять в металлолом. В настоящее время положение изменилось. Стоимость новой арматуры резко возросла. Многие ТЭС не имеют средств на приобретение новой арматуры взамен изношенной. В связи с этим для обеспечения надежной работы энергооборудования имеется необходимость проведения ремонта арматуры на ТЭС.

В зависимости от технического состояния арматура может подвергаться различным видам ремонта. Нормативно-технической документацией предусмотрен текущий, средний и капитальный ремонт. Основным критерием является характер ремонтных работ, дополнительным - стоимость ремонта по отношению к стоимости нового изделия.

Текущий ремонт предназначен для поддержания исправного состояния арматуры и характеризуется тем, что для его проведения не требуется демонтаж арматуры с трубопровода. В объем текущего ремонта входят очистка арматуры, набивка сальниковых уплотнений, подтяжка гаек и в случае необходимости восстановление подвижности шпинделя, устранение других неисправностей, не требующее разборки арматуры. Стоимость текущего ремонта не превышает 7 % первоначальной стоимости изделия (в сопоставимых ценах).

Средний ремонт предназначен для восстановления работоспособности арматуры. При его проведении проверяется работоспособность всех узлов и деталей и их техническое состояние. Все детали очищаются от грязи, следов коррозии, уплотнительные поверхности затвора притираются; мелкие детали, подвергшиеся коррозии, прокладки и сальниковая набивка заменяются. Средний ремонт производится, как правило, на месте установки. Стоимость его не превышает 25 % стоимости изделия.

Капитальный ремонт предназначен для полного восстановления ресурса арматуры. При его проведении арматура снимается с трубопровода и направляется в ремонтную мастерскую, организованную на базе механического цеха электростанции или ремонтного предприятия энергосистемы.

При капитальном ремонте производится восстановление арматуры или замена ее составных частей. Его следует рассматривать как завершающий этап ремонтного цикла, при котором производится полная разборка и ревизия оборудования и восстановление всех его элементов. При этом ремонте производится разборка изделия, очистка и дефектация всех деталей, замена изношенных деталей вновь изготовленными или восстановленными. Уплотнительные поверхности из металла обрабатываются и притираются, набивка сальника и прокладки заменяются новыми. Крепежные детали, имеющие дефекты, также заменяются новыми. В процессе капитального ремонта возможно повышение потребительских свойств арматуры путем усовершенствования ненадежных узлов и применения новых методов механического и химико-термического упрочнения. Перед сдачей в эксплуатацию арматура должна быть подвергнута гидравлическим испытаниям на плотность сварных соединений и сальниковых уплотнений и герметичность затвора запорных органов. Объем и характер проведенного ремонта записываются в журнал ремонта арматуры и формуляр изделия.

Стоимость капитального ремонта доходит до 50 % стоимости изделия.

При организации ремонта арматуры необходимо учитывать сроки проведения ремонта основного оборудования и согласовывать с ним сроки работ, особенно связанных со снятием арматуры с трубопровода.

При проведении ремонтных работ выполняется большое количество различных технологических операций. Их рациональная организация и обеспечение технологической дисциплины создают условия для высокой производительности и качественного выполнения ремонта. Арматура должна ремонтироваться согласно технологической документации.

Наиболее часто встречаются следующие неисправности, подлежащие устранению в процессе ремонта:

потеря герметичности запорного органа в связи с пропуском среды между уплотнительными поверхностями затвора и седла;

потеря герметичности в связи с пропуском среды между седлом и корпусом;

потеря герметичности сальникового уплотнения штока (шпинделя) и соединения крышки с корпусом;

пропуск среды через фланцевое соединение крышки с корпусом;

образование задиров и язвенной коррозии на поверхностях штока (шпинделя), контактирующих с сальниковой набивкой;

износ ходовых резьб шпинделя и резьбовой втулки;

повреждения резьб крепежных деталей;

недопустимо большой нерегулируемый расход воды в регулирующей арматуре;

неисправности привода и поломка маховиков ручного управления.

Указанные неисправности имеют ярко выраженный характер и легко обнаруживаются при визуальном и инструментальном контроле. Для обнаружения скрытых дефектов (трещин, рыхлот, непроваров сварных соединений) требуется применение специальных методов и приемов (ультразвукового контроля, цветной и магнитно-порошковой дефектоскопии).

Длительное время наиболее прогрессивной формой организации ремонта арматуры считался ее централизованный ремонт в специализированной мастерской, созданной на базе ремонтного предприятия энергосистемы. Капитальный ремонт арматуры всех ТЭС энергосистемы в одном месте создает предпосылки для внедрения индустриальных методов ремонта с применением поточных линий, механизирующих весь процесс ремонта от разборки до окраски. При этом создаются условия для применения высокопроизводительного оборудования, специальных приспособлений и оснастки. Проведение ремонта арматуры на базе ремонтного подразделения энергосистемы способствует снижению затрат на создание обменного фонда арматуры и запасных частей.

  Однако в последние годы многие электростанции отказываются от ремонта арматуры на ремонтных заводах энергосистем, что вызвано высокой стоимостью ремонта в связи с большими накладными расходами. В свете этого стоит задача организации централизованного ремонта арматуры на базе ремонтного подразделения ТЭС. Предлагается следующая форма организации ремонта арматуры на ТЭС:

1. Создается единое подразделение по ремонту всей установленной на ТЭС арматуры. Руководителю подразделения должны быть подчинены:

ремонтные участки в котельном и турбинном отделениях котлотурбинных цехов и других подразделений, эксплуатирующих арматуру. Назначение этих участков - текущий профилактический ремонт арматуры на месте ее установки без вырезки из трубопровода;

мастерская для централизованного ремонта арматуры ТЭС. Назначение ее - проведение капитальных и средних ремонтов арматуры, модернизация ненадежных узлов и конструкций арматуры;

группа обеспечения ремонта. Назначение ее - обеспечение ремонтных подразделений технической документацией, необходимой для проведения ремонта; внедрение при ремонте передовых технологий; заказ необходимых для ремонта запасных частей; техническое оформление результатов ремонта; подготовка заявок на замену арматуры, полностью отработавшей свой ресурс; заказ материалов, необходимых для ремонта (сальниковой набивки, графита, притирочных материалов и т.п.).

2. Ремонтные подразделения цехов должны быть оснащены комплектом приспособлений для ремонта арматуры на месте установки, без вырезки из трубопровода.

3. Мастерская для ремонта арматуры должна быть оборудована станками и приспособлениями, обеспечивающими индустриально-заводской ремонт арматуры, оснащена устройствами, позволяющими производить механическое и химико-термическое упрочнение рабочих поверхностей и контроль качества ремонта.

4. Ремонт арматуры должен производиться по технологиям, разработанным специализированными организациями.

5. На каждой ТЭС должен быть создан обменный фонд арматуры, позволяющий на 10 - 15 % снизить продолжительность простоя оборудования в ремонте. Фонд может быть создан как за счет приобретения новой арматуры, так и путем восстановления поврежденной арматуры, ранее сдававшейся в металлолом.

6. На каждой ТЭС следует произвести инвентаризацию арматуры, установленной на трубопроводах тепловой схемы, и с использованием компьютера создать банк данных по каждой единице арматуры, установленной на каждом узле. В память компьютера должны быть заведены: номер арматуры по схеме, тип арматуры (номер чертежа), завод-изготовитель, присоединительные размеры, рабочие параметры, данные о приводах (завод-изготовитель, крутящий момент, тип и мощность электродвигателя). При дальнейшем развитии этой системы в формуляры на наиболее ответственную по функциональному назначению арматуру можно внести данные о наработках и повреждаемости.

Наличие на ТЭС банка данных по арматуре позволит персоналу ТЭС своевременно готовиться к проведению ремонтной кампании и заранее заказывать арматуру взамен изношенной с учетом реальных условий эксплуатации ее на данном узле.

 

РАЗБОРКА И ДЕФЕКТАЦИЯ ДЕТАЛЕЙ И УЗЛОВ АРМАТУРЫ

 

Демонтаж и разборка арматуры

При современной тенденции к увеличению продолжительности эксплуатационного периода ремонт пароводяной арматуры должен базироваться на заводском методе. Увеличить продолжительность эксплуатации основного оборудования можно в том случае, если демонтировать арматуру и доставлять ее в цех для разборки и ремонта, а на место демонтированной арматуры монтировать новую или заранее отремонтированную и испытанную.

Естественно, что демонтаж арматуры и отправка ее в цех для ремонта целесообразны лишь при капитально-восстановительном ремонте.

Обычно крупная арматура не снимается с трубопровода, разборка ее для ремонта и сборка производятся на месте.

Арматура Dy 10 - 20 мм при капитальном ремонте основного оборудования в большинстве случаев ремонтируется в цехе (мастерской).

Успешное выполнение ремонта арматуры в значительной мере зависит от того, как была выполнена разборка. Операции разборки - это ответственные операции, производимые по определенной технологии для каждого типа арматуры.

Перед разборкой арматуры необходимо ознакомиться с инструкциями и чертежами, которые имеются по данной арматуре, а также проверить ее укомплектованность и только после этого приступить к разборке.

При разборке арматуры на узлы и детали производится контроль и сортировка ее деталей на следующие группы:

годные - не имеющие повреждений, влияющих на работу арматуры, сохранившие свои первоначальные размеры или имеющие износ в пределах поля допуска по чертежу;

требующие ремонта - имеющие износ или повреждения, устранение которых технически возможно и экономически целесообразно;

негодные - подлежащие замене, имеющие износ и повреждения, устранение которых либо невозможно по техническим причинам, либо экономически нецелесообразно.

Одновременно выявляются по каждому узлу отсутствующие детали.

Трудно снимающиеся детали, собранные по неподвижным посадкам и длительное время не разбиравшиеся, необходимо разбирать с помощью гидравлических съемников. При этом следует рассчитывать усилия запрессовки разбираемого узла.

Для облегчения съема детали ее можно подогревать в нагретом масле, паром или огнем.

Когда невозможно применить для разборки съемники, можно пользоваться молотками или кувалдами. При применении стальных молотков и кувалд удары должны наноситься через мягкую подкладку.

При разборке ряда узлов (изделий) детали каждого узла (изделия) должны маркироваться и складываться в отдельные ящики. Когда важно выдержать взаимное расположение деталей, метки следует ставить так, чтобы зафиксировать нужное положение.

Для маркировки деталей арматуры можно пользоваться:

клеймами (незакаленные детали, которые не могут деформироваться при ударах);

краской (любые детали);

кислотой (закаленные и незакаленные детали);

электрографом (незакаленные и закаленные стальные детали);

бирками.

 

 Очистка и промывка деталей перед дефектацией

Очистка деталей после разборки узлов необходима для их осмотра и выявления пороков: трещин, задиров, царапин, коррозии, выкрашивания металла, а также для дальнейшей технологической обработки или консервации.

Детали подвергаются промывке для очистки от грязи, посторонних включений, масла. Основные способы промывки деталей приведены в табл. 

 

Основные способы промывки деталей арматуры

Способ промывки

Оборудование и характеристика

Моющие растворы

Ручная

Ванна с сеткой. Лучше иметь две ванны: для предварительной и окончательной промывки. После выдержки в растворе очистка щетками, обтирочными материалами, крючками и др. Грязь оседает под сеткой

Керосин, бензин

В баках

Передвижной или стационарный бак, имеющий в нижней части трубку для электроспирали или змеевик для подогрева моющего раствора. Моющий раствор подогревается до 80 - 90 °С. Детали располагаются на сетке

1) 3 - 5 %-ный раствор кальцинированной соды в воде;

2) по 30 г на литр раствора тринатрийфосфата и кальцинированной соды;

3) 10 %-ный раствор каустической соды в воде;

4) 0,1 - 0,2 % каустической соды, 0,4 % тринатрийфосфата, 0,15 - 0,25 % нитрата натрия, остальное - вода

Моечными машинами

Моечные машины бывают стационарные и передвижные, однокамерные (только для промывки), двухкамерные (для промывки и ополаскивания) и трехкамерные (для промывки, ополаскивания и сушки). В моечных машинах горячие моющие растворы (температурой 80 - 90 °С) подаются на детали под давлением душевыми установками. Детали размещаются на сетках или тележках, которые закатываются в моечную машину

Промывка деталей производится последовательно в горячем растворе, затем в чистой горячей воде, после чего детали тщательно высушиваются.

Детали со шлифованными и полированными поверхностями рекомендуется промывать отдельно.

Нельзя мыть в щелочных растворах детали из цветных металлов, резины, пластмасс, тканей.

Нагар удаляется скребками, шаберами, стальными щетками или химическим способом (детали выдерживаются в течение 15 - 25 мин в растворе, состоящем из 3,5 % эмульсола, 0,15 % кальцинированной соды и воды, при температуре раствора 60 - 80 °С).

 Методы выявления дефектов

Выявление дефектов, имеющихся в деталях, производится с целью рассортировки деталей на годные, негодные и требующие ремонта, а также для уточнения объема работ, предусмотренного ремонтной ведомостью.

При дефектации:

а) производится внешний (визуальный) осмотр для выявления видимых повреждений (трещин, поломок и т.п.);

б) обмеряются рабочие поверхности с помощью измерительного инструмента для установления величины износа и определения пригодности детали к дальнейшей работе;

в) контролируется взаимное расположение поверхностей с помощью специальных приборов и инструмента для определения величины возможного изгиба или коробления;

г) исследуются детали специальными методами для обнаружения пороков, не видимых глазом, с применением цветной, люминесцентной, магнитной, ультразвуковой, рентгеновской и гамма-дефектоскопии и гидравлического испытания.

РАЗБОРКА И ДЕФЕКТАЦИЯ ДЕТАЛЕЙ И УЗЛОВ АРМАТУРЫ

 

Демонтаж и разборка арматуры

При современной тенденции к увеличению продолжительности эксплуатационного периода ремонт пароводяной арматуры должен базироваться на заводском методе. Увеличить продолжительность эксплуатации основного оборудования можно в том случае, если демонтировать арматуру и доставлять ее в цех для разборки и ремонта, а на место демонтированной арматуры монтировать новую или заранее отремонтированную и испытанную.

Естественно, что демонтаж арматуры и отправка ее в цех для ремонта целесообразны лишь при капитально-восстановительном ремонте.

Обычно крупная арматура не снимается с трубопровода, разборка ее для ремонта и сборка производятся на месте.

Арматура Dy 10 - 20 мм при капитальном ремонте основного оборудования в большинстве случаев ремонтируется в цехе (мастерской).

Успешное выполнение ремонта арматуры в значительной мере зависит от того, как была выполнена разборка. Операции разборки - это ответственные операции, производимые по определенной технологии для каждого типа арматуры.

Перед разборкой арматуры необходимо ознакомиться с инструкциями и чертежами, которые имеются по данной арматуре, а также проверить ее укомплектованность и только после этого приступить к разборке.

При разборке арматуры на узлы и детали производится контроль и сортировка ее деталей на следующие группы:

годные - не имеющие повреждений, влияющих на работу арматуры, сохранившие свои первоначальные размеры или имеющие износ в пределах поля допуска по чертежу;

требующие ремонта - имеющие износ или повреждения, устранение которых технически возможно и экономически целесообразно;

негодные - подлежащие замене, имеющие износ и повреждения, устранение которых либо невозможно по техническим причинам, либо экономически нецелесообразно.

Одновременно выявляются по каждому узлу отсутствующие детали.

Трудно снимающиеся детали, собранные по неподвижным посадкам и длительное время не разбиравшиеся, необходимо разбирать с помощью гидравлических съемников. При этом следует рассчитывать усилия запрессовки разбираемого узла.

Для облегчения съема детали ее можно подогревать в нагретом масле, паром или огнем.

Когда невозможно применить для разборки съемники, можно пользоваться молотками или кувалдами. При применении стальных молотков и кувалд удары должны наноситься через мягкую подкладку.

При разборке ряда узлов (изделий) детали каждого узла (изделия) должны маркироваться и складываться в отдельные ящики. Когда важно выдержать взаимное расположение деталей, метки следует ставить так, чтобы зафиксировать нужное положение.

Для маркировки деталей арматуры можно пользоваться:

клеймами (незакаленные детали, которые не могут деформироваться при ударах);

краской (любые детали);

кислотой (закаленные и незакаленные детали);

электрографом (незакаленные и закаленные стальные детали);

бирками.

 

 Очистка и промывка деталей перед дефектацией

Очистка деталей после разборки узлов необходима для их осмотра и выявления пороков: трещин, задиров, царапин, коррозии, выкрашивания металла, а также для дальнейшей технологической обработки или консервации.

Детали подвергаются промывке для очистки от грязи, посторонних включений, масла. Основные способы промывки деталей приведены в табл. 

 

Основные способы промывки деталей арматуры

Способ промывки

Оборудование и характеристика

Моющие растворы

Ручная

Ванна с сеткой. Лучше иметь две ванны: для предварительной и окончательной промывки. После выдержки в растворе очистка щетками, обтирочными материалами, крючками и др. Грязь оседает под сеткой

Керосин, бензин

В баках

Передвижной или стационарный бак, имеющий в нижней части трубку для электроспирали или змеевик для подогрева моющего раствора. Моющий раствор подогревается до 80 - 90 °С. Детали располагаются на сетке

1) 3 - 5 %-ный раствор кальцинированной соды в воде;

2) по 30 г на литр раствора тринатрийфосфата и кальцинированной соды;

3) 10 %-ный раствор каустической соды в воде;

4) 0,1 - 0,2 % каустической соды, 0,4 % тринатрийфосфата, 0,15 - 0,25 % нитрата натрия, остальное - вода

Моечными машинами

Моечные машины бывают стационарные и передвижные, однокамерные (только для промывки), двухкамерные (для промывки и ополаскивания) и трехкамерные (для промывки, ополаскивания и сушки). В моечных машинах горячие моющие растворы (температурой 80 - 90 °С) подаются на детали под давлением душевыми установками. Детали размещаются на сетках или тележках, которые закатываются в моечную машину

Промывка деталей производится последовательно в горячем растворе, затем в чистой горячей воде, после чего детали тщательно высушиваются.

Детали со шлифованными и полированными поверхностями рекомендуется промывать отдельно.

Нельзя мыть в щелочных растворах детали из цветных металлов, резины, пластмасс, тканей.

Нагар удаляется скребками, шаберами, стальными щетками или химическим способом (детали выдерживаются в течение 15 - 25 мин в растворе, состоящем из 3,5 % эмульсола, 0,15 % кальцинированной соды и воды, при температуре раствора 60 - 80 °С).

 Методы выявления дефектов

Выявление дефектов, имеющихся в деталях, производится с целью рассортировки деталей на годные, негодные и требующие ремонта, а также для уточнения объема работ, предусмотренного ремонтной ведомостью.

При дефектации:

а) производится внешний (визуальный) осмотр для выявления видимых повреждений (трещин, поломок и т.п.);

б) обмеряются рабочие поверхности с помощью измерительного инструмента для установления величины износа и определения пригодности детали к дальнейшей работе;

в) контролируется взаимное расположение поверхностей с помощью специальных приборов и инструмента для определения величины возможного изгиба или коробления;

г) исследуются детали специальными методами для обнаружения пороков, не видимых глазом, с применением цветной, люминесцентной, магнитной, ультразвуковой, рентгеновской и гамма-дефектоскопии и гидравлического испытания.

Составление ведомости дефектов

В ведомости дефектов подробно перечисляются дефекты арматуры в целом, каждого узла в отдельности и каждой детали, подлежащей восстановлению и упрочнению.

Правильно составленная и достаточно подробная ведомость дефектов является существенным дополнением к технологическим процессам ремонта, поэтому этот весьма ответственный документ обычно составляет технолог по ремонту при участии исполнителя ремонта и представителя - заказчика. После составления ведомости дефектов начинается ее конструктивная проработка и выдача чертежей для проведения ремонта. Ведомость дефектов  является исходным техническим и финансовым документом.

 

Ведомость дефектов

№ п.п.

Дата

Вид ремонта

Наименование арматуры

Завод-изготовитель

Шифр

Материал

Рабочая сила

Наименование узлов и деталей, подлежащих замене или ремонту

Номера детали и чертежа

Количество деталей

Описание дефектов узлов и деталей

Перечень работ, выполняемых при ремонте

Наименование

Марка, сорт, сечение

Масса, кг

Слесари

Станочники

Норма-ч

Разряд работы

Норма-ч

Разряд работы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К КАПИТАЛЬНОМУ РЕМОНТУ АРМАТУРЫ

Организация капитального ремонта

 Сдача арматуры в ремонт и приемка ее из ремонта осуществляются в соответствии с РДПр 34-38-030-92

 Все материалы и полуфабрикаты, применяемые при изготовлении и ремонте деталей и узлов арматуры, должны соответствовать материалам, указанным в рабочей конструкторской документации, и удовлетворять требованиям Госгортехнадзора России.

Применение материалов, не указанных в конструкторской документации, должно быть согласовано с разработчиками документации или специализированной организацией.

Материалы, применяемые при ремонте, должны иметь сертификаты заводов-поставщиков. При отсутствии сертификатов на материалы их качество должно быть удостоверено лабораторными анализами и испытаниями.

Все легированные стали, используемые для изготовления деталей, даже при наличии сертификатов поставщиков подвергаются дополнительному контролю методом спектрального анализа (стилоскопированию).

Электроды, применяемые при сварочных и наплавочных работах, должны соответствовать маркам, указанным в технической документации предприятия-изготовителя. Качество электродов должно быть подтверждено сертификатом. При выборе электродов можно руководствоваться справочным пособием.

При вырезке корпуса из трубопровода место резки должно располагаться за сварным стыком в сторону трубопровода на расстоянии не менее 20 мм. Обработку кромок патрубков корпуса и трубопроводов под сварку производить в соответствии с ОСТ 108.940.02-82, РД 34.15.027-93  и РД 34.17.310-96.

Торцы патрубков корпусов после ремонта должны быть перпендикулярны к его горизонтальной оси. Неперпендикулярность не должна превышать 1 % внутреннего диаметра.

Порядок разборки арматуры устанавливается руководством по эксплуатации на данное изделие, которое должно поставляться на ТЭС вместе с арматурой или технологическими инструкциями, подготовленными специализированными организациями.

Методы контроля при дефектации основных деталей приведены выше.

Контроль качества заварки и наплавки необходимо производить в объеме 100 % в соответствии со следующей нормативно-технической документацией:

визуальный контроль - РД 34.15.027-93;

цветная дефектоскопия - ОСТ 34.42.545-81;

ультразвуковая дефектоскопия - ОСТ 108.004.108-80;

магнитопорошковая дефектоскопия - ОСТ 108.004.109-80;

рентгеновская дефектоскопия - ОСТ 108.004.110-87;

гидроиспытания - РД 34.15.027-93.

Допускается применение других способов обнаружения дефектов, если эти способы освоены предприятиями, производящими ремонт, и включены в нормативные документы предприятия, утвержденные в установленном порядке.

Последовательность, объем и метод контроля определяются требованиями чертежей и руководства по эксплуатации.

При визуальном контроле особое внимание следует уделять местам, наиболее подверженным коррозионному, эрозионному и механическому износу (уплотнительные поверхности затвора, рабочие поверхности деталей регулирующих органов, цилиндрические поверхности шпинделей в зоне контакта с сальниковой набивкой, резьбовые детали и т.д.).

Дефектация деталей арматуры с резьбовыми поверхностями и крепежных изделий производится визуальным контролем и калибрами. В сомнительных случаях следует произвести ультразвуковую дефектоскопию крепежных изделий.

Детали (кроме корпусных ) и крепежные изделия подлежат замене при срыве или смятии более одной нитки на одной из сопрягаемых поверхностей или при износе резьбы по среднему диаметру, превышающем пределы допусков по ГОСТ 16093-81  и ТУ 26-07-418-87.

По результатам дефектации детали арматуры сортируются по группам:

детали, не имеющие повреждений, влияющих на функционирование изделия, сохранившие свои первоначальные размеры или имеющие износ в пределах поля допусков по чертежу;

детали, имеющие повреждения и износ, которые могут быть устранены на имеющейся ремонтной базе;

детали, подлежащие замене, так как имеющиеся на них повреждения и износ исправлению не подлежат.

Подлежат замене независимо от технического состояния сальниковая набивка, гребенчатые и паронитовые прокладки, кольца сальниковые войлочные, шплинты.

Способы устранения дефектов отдельных деталей

На необрабатываемых поверхностях литых корпусов и крышек допускаются без исправления:

отдельные раковины в любом количестве и расположении (кроме патрубков) диаметром не более 5 мм для всех толщин стенок;

скопление раковин на концах патрубков на площади не более 100×100 мм, если их размеры не превышают 5 мм по диаметру и 3 мм по глубине, при расстоянии между ними не менее 25 мм и общем количестве их не более 4 шт.;

отпечатки пневматических зубил глубиной до 2 мм, сглаженные шлифовальной машинкой.

На обрабатываемых поверхностях основного металла корпусных деталей допускаются без исправления следующие дефекты, кроме трещин:

на сопрягаемых наружных или внутренних, но ненапряженных поверхностях - одиночная кольцевая риска глубиной не более 0,2 мм;

на несопрягаемых наружных поверхностях - не более двух кольцевых рисок глубиной до 0,3 мм;

на несопрягаемых внутренних поверхностях - вырывы, появившиеся при сверлении отверстий диаметром до 20 мм (не более двух); повреждения поверхностей в виде задиров в отверстиях диаметром более 20 мм - до 5 % поверхности. Местные выборки после удаления дефектов глубиной до 5 % толщины стенки допускается не заваривать.

На необрабатываемых поверхностях литых корпусов и крышек, а также на обрабатываемых поверхностях основного металла корпусных деталей не допускаются следующие дефекты:

трещины любых размеров и расположений;

дефекты со сквозными раковинами любых размеров и расположений;

дефекты, превышающие по величине и количеству дефекты, указанные ваше

  Дефекты, подлежащие исправлению сваркой, удаляются механическим способом. Стенки выборки должны быть пологими, угол разделки должен быть не менее 10°. Поверхность разделанного углубления не должна иметь острых углов и заусенцев. Основание выборки на всем протяжении должно иметь плавное очертание окружности.

  Исправления дефектов корпусных деталей (но не более четырех исправлений на одну деталь) путем заварки одного и того же дефектного места разрешается производить не более двух раз.

  Заварку дефектных мест следует производить в соответствии с РД 34.15.027-93 , контроль заваренных мест - в соответствии с РД 2730.940.102-93 .

  При обнаружении дефектов в сварном шве корпуса необходимо произвести УЗД всего шва и прилегающего к нему основного металла шириной 20 мм с двух сторон от границы по всей длине шва.

  На поверхностях кованых и штампо-сварных корпусов допускаются без зачистки отдельные местные вмятины, риски и тому подобные дефекты, если глубина их залегания не превышает 2,5 % толщины стенки.

  Исправление дефектов в сварных швах и выборка металла в местах со сквозными трещинами с последующей заваркой следует производить в соответствии с РД 34.15.027-93.

  Дефекты посадочных мест фланцевых соединений корпуса с крышкой глубиной до 1,5 мм допускается устранять проточкой; дефекты, превышающие 1,5 мм, следует устранять наплавкой с последующей механической обработкой. Предельные отклонения и шероховатость поверхности посадочных мест должны соответствовать требованиям чертежей.

  Требования к деталям, поступающим на сборку

  Размеры, допуски и шероховатость поверхностей деталей после ремонта или изготовления должны соответствовать указаниям конструкторской или ремонтной документации.

  Резьба всех деталей (за исключением наружной трапецеидальной) должна соответствовать среднему классу точности по ГОСТ 16093-81; трапецеидальные резьбы шпинделей выполняются со степенью точности 7е, а для резьбовых втулок - 7Н согласно требованиям ГОСТ 9562-81.

  Шероховатость поверхности профиля резьбы, если она не указана в чертеже детали, должна быть для шпилек и гаек фланцевого соединения, откидных болтов и трапецеидальной резьбы шпинделя и резьбовой втулки не более Rz 20, а в остальных случаях - Rz 40.

  Профиль резьбы на деталях должен соответствовать требованиям ГОСТ 8724-81 и ГОСТ 24705-81.

  Крепежные детали фланцевого соединения задвижек должны отвечать требованиям ГОСТ 20700-75 , группа качества - в зависимости от условий работы крепежных изделий. Остальные крепежные детали должны отвечать требованиям ГОСТ 1759.0-87ГОСТ 1759.1-82 , ГОСТ 1759.2-82ГОСТ 1759.3-83ГОСТ 1759.4-87 и ГОСТ 1759.5-87.

  Разница между твердостью резьбовых поверхностей шпилек и гаек должна быть не менее 12 НВ, при этом твердость гайки должна быть ниже твердости шпильки.

ТЕХНОЛОГИЧЕСКИЕ ОПЕРАЦИИ РЕМОНТА АРМАТУРЫ

Притирка

Общие требования

Плотность (непроницаемость уплотнительных поверхностей) достигается притиркой, которая представляет собой процесс чистовой обработки уплотнительных поверхностей, при котором зерна абразивного материала свободно распределены в виде пасты или суспензии. Инструментом служит притир, на поверхность которого наносится паста или суспензия.

К деталям арматуры, подлежащим притирке, предъявляются следующие требования:

чистота поверхности не ниже Ra = 0,08 мкм;

плоскостность и прямолинейность поверхности - в пределах 80 - 90 % площади, проверяемой плитой на краску;

отсутствие на подлежащей притирке поверхности забоин, вмятин, царапин глубиной более 0,2 мм.

Притиры

Форма притира должна быть зеркальным отображением обрабатываемой поверхности. Точность обрабатываемой поверхности определяется точностью притира. Однако форма притира непрерывно изменяется в процессе притирки, поэтому он должен быть жестким и незначительно изнашиваться под действием паст. Материал должен отличаться однородностью состава, структуры и твердости, так как это оказывает существенное влияние на точность получаемой поверхности и на производительность процесса.

На ЧЗЭМ для притирки деталей арматуры применяются притиры, изготовленные из ферритно-перлитного чугуна СЧ 15-32 с твердостью 163 - 190 НВ. Материал притира должен иметь однородную структуру. Материал, используемый для изготовления притира, должен быть подвергнут естественному или искусственному старению.

Притирочные материалы

Самыми распространенными притирочными материалами являются: корунд, электрокорунд, карбид кремния и карбид бора.

По размерам зерна притирочные порошки делятся на три группы:

шлифпорошки зернистостью 5 - 3 - для грубой доводки;

микропорошки от М28 до M14 - для предварительной доводки;

микропорошки от M10 до М5 - для окончательной доводки.

Кроме порошков для притирки применяются абразивные пасты на основе упомянутых выше порошков.

В целях повышения производительности притирки, особенно когда ремонт производится без вырезки из трубопровода, применяются синтетические алмазы. Синтетические алмазы выпускаются в виде порошков и паст. Пасты из синтетических алмазов применяются для окончательной операции - доводки до 0,16 - 0,06 чистоты. Использование алмазных паст взамен паст, изготовленных на базе электрокорунда, карбида кремния, окиси хрома, дает возможность получить увеличение производительности в 2 - 3 раза, производить обработку твердых и хрупких материалов (азотированных поверхностей, твердых сплавов).

Для обработки уплотнительных поверхностей находят применение пасты из эльбора. При одинаковых технологических условиях обработки уплотнительных поверхностей стойкость эльборовых паст в 1,5 - 2 раза выше стойкости паст из синтетических алмазов и в 3 - 5 раз выше стойкости обычных абразивных паст. В первую очередь этими пастами следует производить притирку уплотнительных поверхностей деталей запорных органов главных паровых задвижек, главного и импульсного предохранительных клапанов и некоторой другой арматуры, установленной на наиболее ответственных узлах энергооборудования. Кроме того, применение паст из эльбора эффективно в тех случаях, когда оборудование остановлено для аварийного ремонта и его необходимо как можно скорее ввести в работу.

Режимы притирки и доводки

Производительность процесса доводки и достигаемая при этом шероховатость поверхности зависят не только от абразивного инструмента, но и от технологии притирки: скорости перемещения притира, удельного давления между притиром и деталью, способа подачи доводочного материала.

С увеличением скорости перемещения притира до 4 м/с производительность притирки возрастает прямо пропорционально скорости. При притирке шаржированными притирами дальнейшее увеличение скорости приводит к чрезмерному нагреву трущихся поверхностей и снижению точности деталей. При притирке абразивной суспензией увеличение скорости снижает производительность вследствие большой центробежной силы, которая стремится отбросить абразивную суспензию от центра притира. Процесс протекает ненормально, притиры начинают вибрировать и перемещаться рывками, что отражается на производительности и точности притирки.

Производительность процесса тем больше, чем выше давление между притиром и деталью. Эта зависимость сохраняется до давления 0,3 МПа. При большем давлении происходит быстрое раскалывание и истирание абразивного зерна и нагревание трущихся поверхностей, что приводит к деформации деталей. Чрезмерное увеличение давления может также вызывать задиры на поверхности притира.

Способ подачи притирочного материала в зону контакта притира с обрабатываемой поверхностью влияет на производительность притирки. Наибольшая производительность достигается при непрерывной подаче суспензии в центральную часть притира. Производительность снижается в 2,5 - 3 раза при предварительном шаржировании поверхности притира абразивным порошком.

Припуск на предварительных притирочно-доводочных операциях составляет в среднем 0,02 - 0,05 мм, в некоторых случаях может быть доведен до 0,1 - 0,2 мм, на окончательных операциях 3 - 5 мкм.

В качестве смазочных жидкостей при доводке применяются керосин и олеиновая кислота. Оптимальное количество олеиновой кислоты в смеси с керосином должно составлять 2,5 %.

Для предотвращения завалов и перекосов на притираемой поверхности необходимо правильно распределить усилия, прилагаемые к детали, а также определить центр тяжести детали.

Повышение качества уплотнительных поверхностей методом пластической деформации

При абразивной притирке уплотнительных поверхностей хотя и достигается чистота поверхности и прямолинейность, однако в процессе микрорезания на поверхности остаются мельчайшие следы от абразивных материалов. Иногда происходит внедрение крупных абразивных зерен в поверхность, что может привести к ее задиранию.

Для устранения указанных дефектов и для повышения прочности рабочих поверхностей при ремонте арматуры применяется метод пластической деформации уплотнительных поверхностей путем их обкатки роликами или пружинящими шариками, а также алмазное выглаживание.

При обкатке достигается сочетание высокой чистоты с упрочнением поверхностного слоя, что повышает механические свойства деталей: повышаются твердость поверхностного слоя и его износостойкость, предел текучести и особенно предел усталости.

Качество обкатки зависит от физико-механических свойств и состояния обрабатываемой поверхности, режимов обкатки, конструкции приспособления и ролика.

Обкатка выполняется с помощью свободно вращающихся (одного или нескольких) роликов, приводимых в соприкосновение с обрабатываемой поверхностью под давлением. Обкатке подвергаются металлы, имеющие твердость не более 400 НВ. Эффективность обкатки снижается начиная с твердости 280 НВ. С повышением пластичности металла и снижением его твердости повышается глубина и степень наклепа, улучшается чистота поверхности и снижаются остаточные напряжения сжатия в поверхностном слое.

Большое влияние на качество обкатки оказывает состояние исходной поверхности: она не должна иметь микротрещин, рисок, вырывов.

Обкатка цилиндрических поверхностей выполняется на токарных и револьверных станках, а плоских - на строгальных. Число роликов выбирается в зависимости от обрабатываемой заготовки и назначения обкатки. Обкатка одним роликом применяется для обработки жестких заготовок, более эффективна обкатка двух-, трех- и четырехроликовыми накатками. Твердость рабочих поверхностей роликов должна быть не ниже 58 HRC. Ролики изготавливаются из сталей марок X12, Х12М, ХВГ, У10 или У12. Для повышения износостойкости роликов на их поверхность рекомендуется нанести твердый сплав.

На качество обкатки влияет подача ролика. Малые подачи обеспечивают лучший результат. Наиболее эффективны первые 3 прохода. Увеличение числа проходов может привести к перенаклепу и увеличению шероховатости поверхности.

Обкатку с цилиндрическим роликом рекомендуется производить с подачей 0,4 - 0,8 мм/об.

Обкатка роликами нашла применение на некоторых арматурных заводах. На ПО «Сибэнергомаш» производится обкатка шпинделей паровых задвижек, на ЧЗЭМ применяется шариковая обкатка поверхностей рубашек поршневых камер предохранительных клапанов. На этом же заводе резьбовыми роликами производится накатка резьбы шпилек и корпусов вентилей Dy 10 - 20 мм. На этих же вентилях вместо малоэффективной и плохо контролируемой притирки уплотнительных поверхностей производится уплотнение поверхностей с помощью пуансона. Нижний конец пуансона выполнен в виде конуса с углом, соответствующим углу уплотнительного пояска вентиля, а его цилиндрические поверхности играют роль направляющих. Уплотнение осуществляется ударом по верхнему торцу пуансона молотком. В результате получаются высокая чистота и твердость уплотнительного пояска.

Один из методов отделочно-упрочняющей обработки пластическим поверхностным деформированием заключается в деформировании обрабатываемой поверхности скользящим по ней инструментом - выглаживателем с закрепленным в оправке кристаллом алмаза. При этом неровности поверхности, оставшиеся от предшествующей обработки, сглаживаются частично или полностью и поверхность приобретает зеркальный блеск.

В результате выглаживания повышается твердость поверхностного слоя, износостойкость и сопротивление задираемости. Высокая твердость алмаза дает возможность обрабатывать почти все металлы, поддающиеся деформации, как мягкие, так и закаленные до твердости 60 - 65 HRC.

На качество выглаженной поверхности и на стойкость инструмента большое влияние оказывает при выглаживании смазочно-охлаждающая жидкость. Применение индустриального масла снижает износ алмазного выглаживания в 5 раз по сравнению с выглаживанием без смазки. Оптимальная подача, обеспечивающая требуемое качество поверхности, находится в пределах 0,02 - 0,06 мм/об - при выглаживании закаленных сталей, 0,02 - 0,08 мм/об - незакаленных сталей и 0,02 - 0,15 мм/об - бронзы.

Упрочнение химическим никелированием

Для повышения износостойкости и коррозионной стойкости шпинделей из углеродистой и легированных сталей паровой и водяной арматуры небольших проходов применяется химическое никелирование. Покрытия, полученные химическим никелированием, представляют собой сплав никеля с 10 - 15 % фосфора. Этот метод обеспечивает равномерность покрытия, высокие защитные свойства в условиях атмосферной и высокотемпературной коррозии, твердость поверхности до 50 - 55 HRC. В целях увеличения сцепления слоя покрытия с основным металлом и повышения твердости покрытия производится термическая обработка деталей в электрических печах по режиму: нагрев до 400 ± 20 °С с выдержкой в течение 1 ч. После никелирования детали должны быть гладкими и блестящими.

Упрочнение азотированием

Для повышения износостойкости деталей арматуры, работающих на воздухе, в воде и на паре, применяется азотирование рабочих поверхностей.

При азотировании атомарный азот диффундирует в поверхностный слой деталей и образует с железом и легирующими элементами химические соединения - нитриды. Благодаря этому в результате азотирования можно получить твердость поверхностного слоя в 1,5 - 2 раза более высокую, чем при цементации. К достоинству азотирования следует отнести сохранение твердости азотированного слоя при нагреве детали до 500 - 600 °С.

Наибольшей твердостью после азотирования отличаются легированные стали, содержащие в своем составе алюминий, хром, молибден и вольфрам. При азотировании углеродистой стали поверхностный слой получается не очень твердым, но коррозионно-стойким. Поэтому азотирование углеродистых сталей называют антикоррозионным, а легированных - твердостным.

Твердостное азотирование применяется в тех случаях, когда к деталям предъявляются особые требования в отношении износостойкости, например, к шиберам клапанов, работающих на паре, измерительному инструменту, деталям станков.

Антикоррозионное азотирование рекомендуется применять для обработки деталей, подвергающихся при эксплуатации коррозии, например, шпинделя (штока), пружины.

При твердостном азотировании глубина азотированного слоя составляет: для стали 38Х2МЮА - 0,45 мм, 12Х18Н10Т - 0,2 - 0,5 мм. Глубина азотированного слоя при антикоррозионном азотировании стали 35 составляет 0,1 - 0,2 мм, сталей 38Х2МЮА и 25Х2М1Ф - 0,1 - 0,3 мм.

ГИДРАВЛИЧЕСКИЕ ИСПЫТАНИЯ АРМАТУРЫ

В процессе изготовления арматуры могут иметь место дефекты материала деталей или погрешности обработки и сборки, которые снижают прочность конструкции или ухудшают эксплуатационные качества изделия. Аналогичные дефекты может иметь арматура, прошедшая ремонт. Для выявления этих дефектов и последующей их ликвидации после изготовления и ремонта арматура должна проходить гидравлические испытания на прочность и герметичность затвора и сальниковых уплотнений.

При гидравлических испытаниях на прочность проверяется непроницаемость металла и сварных соединений.

При гидравлических испытаниях на герметичность проверяется непроницаемость затвора, сальниковых и прокладочных уплотнений.

Детали арматуры, изготавливаемые из отливок, могут иметь песчаные и газовые раковины, пористость металла, трещины, разностенность, остаточные внутренние напряжения. Опыт показывает, что многие скрытые дефекты литых деталей корпусов выявляются после длительной эксплуатации арматуры. В сварных соединениях возможны непровары, трещины, пористость, растрескивание околошовной зоны.

Указанные дефекты могут быть выявлены в процессе гидроиспытаний на прочность.

Испытания на прочность проводятся пробным давлением, установленным ГОСТ 356-80. Оно должно в 1,5 раза превышать условное давление. Многие предприятия задают область применения выпускаемой арматуры не через условное давление, а через рабочие параметры: давление и температуру. В этом случае для определения значения пробного давления надо по таблицам ГОСТ 356-80  по заданным рр и tр определить значение условного давления, а по нему - значение пробного.

Испытания проводятся водой при нормальной температуре (+5 ÷ +20 °С), а наличие или отсутствие протечек выявляется внешним осмотром испытуемого изделия, падением давления в замкнутом объеме или с помощью специальных приборов. Продолжительность устанавливается соответствующими документами (техническими условиями, стандартами). Она должна быть достаточной для осмотра и оценки годности изделия: для арматуры с условным проходом менее 50 мм - 1 - 3 мин, 50 мм и выше - 3 - 5 мин. Для ответственной арматуры больших проходов выдержка под давлением должна быть не менее 10 мин. Арматура считается выдержавшей испытания на прочность и плотность основного металла и сварных соединений, если не будет обнаружен пропуск воды и отпотевание поверхности деталей. Для лучшего выявления протечек через литые корпусные детали в процессе гидроиспытаний их рекомендуется простукивать медным или свинцовым молотком массой 0,8 - 1,0 кг.

Детали, в которых были выявлены течи, после исправления заваркой должны быть подвергнуты повторному испытанию на прочность.

Испытания арматуры на герметичность проводятся для проверки качества притирки уплотнительных поверхностей деталей затвора. Одновременно контролируется качество сборки разъемных соединений: сальниковых уплотнений штока (шпинделя) и корпуса с крышкой и прокладочных уплотнений фланцевых соединений. Испытания проводятся давлением, равным 1,25 рабочего.

В процессе испытания на герметичность затвора запорной арматуры (задвижек, запорных клапанов) производится двукратный подъем и опускание затвора. Уплотнительные поверхности перед испытанием должны быть обезжирены. Герметичность контролируется после закрытия арматуры нормальным усилием одного человека. Задвижки с условным проходом свыше 150 мм допускается закрывать усилием двух человек. Электроприводную арматуру при гидроиспытаниях рекомендуется закрывать электроприводом, настроенным на отключение при превышении уставки токового реле или муфты ограничения крутящего момента, установленной для испытываемого изделия.

Допустимые протечки среды через затвор запорной арматуры определяются классом герметичности изделия, определяемым его функциональным назначением. Нормы герметичности запорной арматуры в настоящее время определяются ГОСТ 9544-93, согласно которому установлены четыре класса герметичности. Максимально допустимые протечки для каждого класса при испытаниях водой приведены ниже.

Классы герметичности

A

B

C

D

Нет видимых протечек

0,0006 см3/мин × Dy

0,0018 см3/мин × Dy

0,006 см3/мин × Dy

При определении допустимой протечки номинальный условный диаметр Dy принимается в миллиметрах. Погрешность измерения протечек не должна превышать ±0,01 см3/мин - для протечек ≤ 0,1 см3/мин и ±5 % - для протечек более 0,1 см3/мин.

Длительное время допустимые протечки среды через затворы запорной арматуры регламентировались ГОСТ 9574-75, в котором были установлены 3 класса герметичности: первый, второй и третий. В технических условиях большинства заводов-изготовителей класс герметичности изделия указан по ГОСТ 9544-75. Нормы протечек по ГОСТ 9544-75 и ГОСТ 9544-93 различаются между собой. Для возможности сопоставления протечек по обоим ГОСТ в табл. приведены данные о допустимых протечках, установленных ГОСТ 9544-75, и протечках, рассчитанных для арматуры различных проходов по ГОСТ 9544-93.

 

Допустимые протечки среды через запорную арматуру по ГОСТ 9544-75 и ГОСТ 9544-93

Условный проход Dy, мм

Допустимые протечки, см3/мин

по ГОСТ 9544-75

по ГОСТ 9544-93

1-й класс

2-й класс

Класс В

Класс С

Класс D

10

0,01

0,01

0,006

0,08

-

20

0,01

0,01

0,012

0,036

-

50

0,02

0,05

0,03

0,09

-

65

0,03

0,08

0,039

0,117

-

80

0,04

0,10

0,048

0,144

-

100

0,16

0,5

0,06

0,18

0,36

150

0,3

0,9

0,09

0,27

0,54

200

0,45

1,3

0,12

0,36

0,76

250

0,65

2,0

0,15

0,45

0,90

300

0,8

2,5

0,18

0,54

1,08

400

1,3

4,0

0,24

0,72

1,54

500

1,7

5,0

0,3

0,90

3,00

600

2,4

7,0

0,36

0,108

9,6

700

-

-

0,42

0,126

4,2

800

3,5

10

0,48

0,144

4,8

Испытания на герметичность регулирующей арматуры проводятся в том случае, если она должна выполнять запорные функции и если с заказчиком согласовано конкретное значение допустимых протечек.

Допустимые протечки обратных клапанов определяются ТУ 26-07-1162-77.

 

Допустимые протечки обратных клапанов

Условный проход Dy, мм

Допустимые протечки воды, см3/мин

25 - 65

1

100

3

200

7

300 - 400

12

600

20

Во время испытаний проверяется легкость движения подвижных частей. Каждая единица арматуры, прошедшая испытание, регистрируется в